FPT Approximation Schemes for Maximizing Submodular Functions

نویسنده

  • Piotr Skowron
چکیده

We investigate the existence of approximation algorithms for maximization of submodular functions, that run in fixed parameter tractable (FPT) time. Given a non-decreasing submodular set function v : 2 → R the goal is to select a subset S of K elements from X such that v(S) is maximized. We identify three properties of set functions, referred to as p-separability properties, and we argue that many real-life problems can be expressed as maximization of submodular, p-separable functions, with low values of the parameter p. We present FPT approximation schemes for the minimization and maximization variants of the problem, for several parameters that depend on characteristics of the optimized set function, such as p and K . We confirm that our algorithms are applicable to a broad class of problems, in particular to problems from computational social choice, such as item selection or winner determination under several multiwinner election systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Approximation Algorithms for k-Submodular Function Maximization

This paper presents a polynomial-time 1/2-approximation algorithm for maximizing nonnegative k-submodular functions. This improves upon the previous max{1/3, 1/(1+a)}-approximation by Ward and Živný [15], where a = max{1, √ (k − 1)/4}. We also show that for monotone ksubmodular functions there is a polynomial-time k/(2k− 1)-approximation algorithm while for any ε > 0 a ((k + 1)/2k + ε)-approxim...

متن کامل

Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Maximizing Bisubmodular and k-Submodular Functions

Submodular functions play a key role in combinatorial optimization and in the study of valued constraint satisfaction problems. Recently, there has been interest in the class of bisubmodular functions, which assign values to disjoint pairs of sets. Like submodular functions, bisubmodular functions can be minimized exactly in polynomial time and exhibit the property of diminishing returns common...

متن کامل

Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms

We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...

متن کامل

Maximizing submodular functions using probabilistic graphical models

We consider the problem of maximizing submodular functions; while this problem is known to be NP-hard, several numerically efficient local search techniques with approximation guarantees are available. In this paper, we propose a novel convex relaxation which is based on the relationship between submodular functions, entropies and probabilistic graphical models. In a graphical model, the entrop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016